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Slowing Down in Chemical Tristability Systems
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In this paper two kinds of slowing down in the chemical trista-
bility systems are studied. One is the critical slowing down at
the edges of tristable region, and the other is the slowing
down far from the critical point, which has much to do with
the unstable steady-points. The results possess some universal

properties.
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Introduction

Much attention has been paid on the critical phe-
nomena in nonlinear chemical reaction.'® The slowing
down in chemical bistability has been studied in some
papers.* The chemical tristability system is also a typi-
cal nonlinear dissipative system. In previous paper,®7 it
was pointed out that both the tristability termination point
and the bistability termination point®® have the character
of second-order-like phase transition. But the difference
between bistability and tristability is that the bistability
termination point is a stable critical point, and the
tristability termination point is an unstable critical point.
In this paper, we precede a further study of the slowing
down in the chemical tristability, discuss the critical
slowing down at the fringe critical point and termination
point, and compute the two kinds of critical slowing
down phenomena. The result of this study is respectively
consistent with the critical exponent at the tangent bifur-
cation point and the double-period bifurcation point in
the chaotic dynamics. The other kind of unstable slowing
down is also studied, which is called the slowing down
far from the critical point. This is a critical phenomenon
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related to so-called strange rejecter. In the end, the two
kinds of slowing down are simulated in the computer,
and the result of the simulation is consistent with the
theory .

Results and discussion

Critical points of tristability system and their slowing
down '

Assuming in a chemical reaction, only the concen-
tration of one ingredient is changeable, however, the
concentrations of the rest of the ingredients are constant
as to be under environmental control. The reaction rate
coefficient is constant because of the constant reaction
conditions (e. g., temperature, pressure etc.). Thus,
from the Law of Mass Action, the rate equation of
changeable ingredient concentration x is as follows:

4 _ p(z,q) (1)

where ¢ is the control parameter (maybe one or one set)
in the system. As Eq. (1) is an autonomic dynamics
equation, the system has potential function.* The poten-
tial function G(x, g) can be determined by the follow-
ing equation

ds __ G
dt = % (2)

When dx/dt =0, the static equation of this system

Project supported by the National Natural Science Foundation of China.



Vol. 19 No. 8 2001

Chinese Joumal of Chemistry 725

is obtained as follows:
F(x,q) =0 (3)

There can be five static values (x,) in Eq. (3) by ad-
justing the control parameter g. Three of the five static

values are stable (in this case, (%)x.>0), but the

other two are unstable (in this case, (

%j)x,w).

This system is called tristability system. From this sys-
tem, two kinds of critical points can be defined.

(a) The first kind of critical point: for (az 2) =

0), where the label “c” stands for this kind of point.
There are four critical points of this kind in the tristabili-
ty system, and it can be demonstrated that this kind of
critical points are unstable.?*?

(b) The second kind of critical point: The system
can be transited from tristability to bistability by further
adjusting the control parameter ¢. This transition point
is another critical point (the termination point of the
tristability) , and the equation is as follows:

)= o= 5

ox K= )x Oand(

)x<0 (4)

This critical point is an unstable inflexion. As shown in
Fig.1, K;, K, K3 and K belong to the first kind of
critical point, and K belongs to the second kind of the
critical point.

Slowing down at the first kind critical point
The fringe critical point is unstable, and there is
2
oF ) = (8 G

ox §)° =0
(5)

Flsoq) == (3, = 0; (5

Using the same method as in a previous paper, "1
when F(x, ¢) is expanded in Eq. (1) at the variable »
of the critical point to the second power (since the first
power is zero), and at g of the critical point to the first
power, then integral, the jumping time of the state can be
obtained when the system is passing the critical point.
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Fig. 1 Steady-state curve x ~ ¢ of the tristability
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where x; < x. < 5. When g—>¢qg, the inverse tangent
of the above equation goes to m, and therefore the fol-
lowing equation is obtained.

1
toocl g - gol2 (7

Eq.(7) is concluded on the basis of the conditions
that the fringe critical point in the tristability system
should satisfy. The critical exponent is 1/2. This result
is identical with the paroxysm chaotic interval diffusion at
the tangent bifurcation point in the chaotic dynamics.
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Slowing down at the second kind of critical point

The second kind of critical point is an inflexion
critical point. The following equation can be obtained
with Eq.(4).

*F

F(xx,qx) = (%)K = (y)x =0 and

3
g—xf) <0 (8)

Firstly F(x, g) is expanded at x of critical point
in Eq. (1) to the first power, then the following equation
is obfained:

B P =G s ®

. -4 .
In the above equation, let A = x — xx = ce”t,(c is a
constant, I, is characteristic time), and the following
equation is obtained:

1 OF (%, qy) I
te ox x=
t, = - 1 (10)
: OF (x,qg)
EYIRE

when ¢—>gx, Qﬂaix’—q) li=s, i expanded to the first

power at gg:

aF(x’qK)l ang,g))K

ox x=mg = ( ox

(a2F§x,g2

ox3Jg (1)

x(g - gx)

oF(x,q)
ox

Eq.(10), Eq.(12) can be obtained:

as ix = 0, substituting the above equation to

1

Iy = — 8F§x 1 (12)

2x3q Ix(q - qK)

From the above equation, the critical exponent at
the second kind of critical point is 1. This result is con-

sistent with the slowing down at the double~period bifur-
cation in the chaotic dynamics.'! Since this critical point
is unstable, the characteristic time t, <0, which is dif-
ferent from the characteristic time in bistability system.

Slowing down at the unstable static state

Assume the reaction concentration x initiated at the
tristability area (far from the threshold point) by adjust-
ing the control parameter. The reaction concentration x
corresponding to this control parameter gg has five steady
states: %y, %3, %3, %4, %5 (X < 2, < 23 < XK
%s). As shown in Fig. 1, the three steady states of %,
x3, xs are stable, and the reaction concentration x can
stay at these states, but the two steady states of x,, x4
are not stable, and the reaction concentration x can stay
at these states in the beginning, but when the system en-
counters slight fluctuation, it will deviate from these
states to other steady states. The following will demon-
strate the dynamic action when the reaction concentration
approaches to unstable state x,, (m =2, 4). The sys-
tem is first initiated at one of the three stable states. On
the basis of this, a rectangular pulse of intensity g, and
time interval T are added (add negative pulse when in
high branch state, positive pulse in low branch state,
and positive or negative pulse when in middle branch
state) . The reaction concentration xg can be made ap-
proach to %, (m =2, 4) while the pulse just termi-
nates. In this case, Eq. (1) can be expanded to the
first power at the unstable state x,, .

% = xp + (%0 — %p)expl - (g_f)xmt] (13)

As (%f) < 0 at the unstable points, therefore,

when ¢t — o, the above equation will be “divergent”.
The system will not go to x,,. Even so, the following
conclusion can be made by analysis:

a) When xy > x4, the system will go to high
branch state xs.

b) When x4 > x> x,, the system will go to mid-
dle branch state x3.

¢) When % < x,, the system will go to low branch
state x.

d) The closer the xo approaches to %, (m =2,
4), the longer time it will take for the system to go to
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the stable state. This is so-called slowing down far from
the critical point.

Numerical result

In the papers,%’ the following chemical reaction
dynamics equation was obtained:

S 1+ Q}x3

x=F(x,p,q)=—xg+ 3 -pr+q
(14)

where x is the scaling concentration of the changeable
ingredient, p and ¢ are the control parameters of the
system, which have something to do with the ingredient
concentrations @, b, d and the coefficient of the reac-
tion rate. The static equation of the system can be ob-
tained::

g="75-""3  +P% (15)
The static curve shown in Fig. 1 is from the above
equation. On the basis of dynamics Eq. (14), Runge-
Kutta method is used to study the slowing down of the
system. Fig. 2—35 are the results of the computer stimu-
lation. Fig. 2 and 3 indicates the slowing down at the
fringe critical points K; and K;. Fig. 4 indicates the
slowing down at the inflexion critical point. The inflex-
ion critical point is an unstable point, therefore the sys-
tem will not stay at this point forever. But the slowing
down grade at this point is different from that at other
unstable point. The curves 1 and 2 in Fig. 4 are the
slowing down at other unstable points. The curves 3 and
4 are the slowing down at the inflexion eritical point.
The slowing down time when & = x4 - %, =0.00005 in
curve 2 is equivalent to that when & = x5 — xg =
0.10610 in curve 4. This indicates that the slowing
down grade at the inflexion critical point is bigger than
that at other unstable points. This agrees to the theory
just discussed. The slowing down at the unstable steady
point in the tristability system shown in Fig. 5 agrees to
the theory discussed in section “Critical points of trista-
bility system and their slowing down” in this paper.

Conclusion

In this paper, the slowing down in the chemical
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Slowing down at unstable point Ky, p=0, go=0, T
=, 2= -0.3170. 1, ¢,= -0.220; 2, ¢, =
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Fig. 3 Slowing down at unstable point K3, p=0.1, ¢o=0,
T'=cw, x;=~0.3170. 1, ¢, =0.220; 2, ¢, =
0.230; 3, ¢,=0.230; 4, ¢,=0.250.

tristability system has been studied , and the following
conclusion can by obtained:

a) The slowing down phenomena existed at the both
kinds of critical points. In a previous paper,' it was
pointed out that the first order phase transition existed at
the first kind of critical point. In this paper the critical
exponent was computed at this critical point and the val-
ue is 1/2. The second kind of critical point is a second-
order-like phase transition point and the critical exponent
at this critical point is 1. From this, it can be seen that
they have some common characters. The difference is
that the characteristic time of the termination point in the
bistability system is positive, however, in the tristability
system is negative.
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Fig. 4 Slowing down at the point of K and x,,, T=2, p=
0,x, =0.77815, xx =0: 1, ¢o=0.10, ¢, =
0.98757, xp = 0.77820; 2, ¢o = 0.10, ¢, =
0.98756, xo=0.77821; 3, ¢o=0, ¢,=0.750, x;
=0.1061; 4, ¢o=0, ¢,=0.650, xo=0.1176.
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Fig. 5 Slowing down at unstable-state point x; and x4. T =
2, p=0.10, x, = - 1.2245, x, = - 0.5775, x;
=0, x4 = +0.5775, xs= +1.2245. 1, ¢, =
0.3008, %y = 0.5778; 2, ¢, = 0.3007, x, =
0.5770; 3, ¢,=0.3007, xo= ~0.5770; 4, ¢, =
~-0.3008, xp= -0.5778.

b) Any point in the tristability area can be initiated by

the control parameters. Related to this located point,

there are slowing down phenomena far from the critical
point. For different located points, there are correspond-
ing slowing down phenomena, which are different from
the critical slowing down phenomena.

c¢) The slowing down phenomena at the unstable
steady-state are far away from the above two kinds of
critical points. The two unstable steady-states correspond
to the maximum value of the potential function. They are
called strange rejecters, which are the dividing point of
high, middle and low attractors.'! If the initial value is
very close to the strange rejecter, the initial stage of the
positive evolution will take a long time to leave the
strange rejecter. In this case, the track will reflect the
chaotic action determined by the strange rejecter.
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